Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Adv Biol (Weinh) ; : e2300028, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20238363

ABSTRACT

There is still controversy about whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination at different times of day will induce a stronger immune response. Therefore, a randomized controlled trial (ChiCTR2100045109) is conducted to investigate the impact of vaccination time on the antibody response to the inactivated vaccine against SARS-CoV-2 from April 15 to 28, 2021. Participants are randomly assigned in a 1:1 ratio to receive inactivated SARS-CoV-2 vaccine in the morning or afternoon. The primary endpoint is the change of neutralizing antibody between baseline and 28 days after the second dose. In total, 503 participants are randomized, and 469 participants (238 in the morning group and 231 in the afternoon group) complete the follow-up. There is no significant difference in the change of neutralizing antibody between baseline and 28 days after the second dose between the morning and afternoon groups (22.2 [13.2, 45.0] AU mL-1  vs 22.0 [14.4, 40.7] AU mL-1 , P = 0.873). In prespecified age and sex subgroup analyses, there is also no significant difference in the morning and afternoon group (all P > 0.05). This study demonstrates that the vaccination time does not affect the antibody response of two doses of inactivated SARS-CoV-2 vaccine.

3.
Clin Transl Med ; 13(1): e1171, 2023 01.
Article in English | MEDLINE | ID: covidwho-2172838

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), which is still devastating economies and communities globally. The increasing infections of variants of concern (VOCs) in vaccinated population have raised concerns about the effectiveness of current vaccines. Patients with autoimmune diseases (PAD) under immunosuppressant treatments are facing higher risk of infection and potentially lower immune responses to SARS-CoV-2 vaccination. METHODS: Blood samples were collected from PAD or healthy controls (HC) who finished two or three doses of inactivated vaccines. Spike peptides derived from wild-type strain, delta, omicron BA.1 were utilised to evaluate T cell responses and their cross-recognition of delta and omicron in HC and PAD by flow cytometry and ex vivo IFNγ-ELISpot. RESULTS: We found that inactivated vaccine-induced spike-specific memory T cells were long-lasting in both PAD and HC. These spike-specific T cells were highly conserved and cross-recognized delta and omicron. Moreover, a third inactivated vaccine expanded spike-specific T cells that responded to delta and omicron spike peptides substantially in both PAD and HC. Importantly, the polyfunctionality of spike-specific memory T cells was preserved in terms of cytokine and cytotoxic responses. Although the extent of T cell responses was lower in PAD after two-dose, T cell responses were boosted to a greater magnitude in PAD by the third dose, bringing comparable spike-specific T cell immunity after the third dose. CONCLUSION: Inactivated vaccine-induced spike-specific T cells remain largely intact against delta and omicron variants. This study expands our understanding of inactivated vaccine-induced T cell responses in PAD and HC, which could have important indications for vaccination strategy.


Subject(s)
Autoimmune Diseases , COVID-19 Vaccines , COVID-19 , T-Lymphocytes , Humans , Autoimmune Diseases/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , SARS-CoV-2 , T-Lymphocytes/immunology , Vaccines, Inactivated
4.
Nat Commun ; 13(1): 6866, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2119060

ABSTRACT

The effectiveness of a 3rd dose of SARS-CoV-2 vaccines waned quickly in the Omicron-predominant period. In response to fast-waning immunity and the threat of Omicron variant of concern (VOC) to healthcare workers (HCWs), we conduct a non-randomized trial (ChiCTR2200055564) in which 38 HCWs volunteer to receive a homologous booster of inactivated vaccines (BBIBP-CorV) 6 months after the 3rd dose. The primary and secondary outcomes are neutralizing antibodies (NAbs) and the receptor-binding domain (RBD)-directed antibodies, respectively. The 4th dose recalls waned immunity while having distinct effects on humoral responses to different antigens. The peak antibody response to the RBD induced by the 4th dose is inferior to that after the 3rd dose, whereas responses to the N-terminal domain (NTD) of spike protein are further strengthened significantly. Accordingly, the 4th dose further elevates the peak level of NAbs against ancestral SARS-CoV-2 and Omicron BA.2, but not BA.1 which has more NTD mutations. No severe adverse events related to vaccination are recorded during the trial. Here, we show that redistribution of immune focus after repeated vaccinations may modulate cross-protective immune responses against different VOCs.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Immunity, Humoral , Membrane Glycoproteins/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Inactivated , Viral Envelope Proteins
5.
Thyroid ; 32(9): 1051-1058, 2022 09.
Article in English | MEDLINE | ID: covidwho-1956555

ABSTRACT

Background: The safety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is widely appreciated. However, there is limited knowledge regarding the potential impact of SARS-CoV-2 vaccines on the thyroid. Methods: We performed two prospective clinical trials between April and June, 2021, enrolling recipients of the inactivated SARS-CoV-2 vaccine (BBIBP-CorV and CoronaVac). Thyroid function, antithyroid antibody levels, and SARS-CoV-2 neutralizing antibody levels were detected for each participant before receiving the first vaccine dose and 28 days after receiving the second vaccine dose. Results: A total of 657 recipients participated in the study. The overall median thyroid function and levels of antithyroid antibodies before and after SARS-CoV-2 vaccination were within the normal range. Among the 564 participants with normal thyroid function at baseline, 36 (6.38% [confidence interval; CI 4.51-8.73]) developed thyroid dysfunction. Of the 545 recipients with negative antithyroid antibodies at baseline, none developed abnormal antibodies after vaccination. Notably, 75.27% (70/93 [CI 65.24-83.63]) of the 93 recipients with thyroid dysfunction returned to normal function after vaccination. The levels of antithyroid peroxidase antibody (96.20% [CI 89.30-99.21]) and antithyroglobulin antibody (TgAb; 88.31% [CI 78.97-94.51]) remained positive after vaccination in most patients with abnormal values at baseline. However, the TgAb levels in more than half of the patients (48/77) decreased. All of 11 abnormal thyrotropin receptor antibody levels at baseline decreased postvaccination. Conclusions: Vaccination with an inactivated SARS-CoV-2 vaccine had no significant adverse impact on thyroid function or antithyroid antibodies within the first 28 days after the second dose. Clinical Trial Registration: ChiCTR2100045109 and ChiCTR2100042222.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Autoimmunity , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Peroxidases , Prospective Studies , Receptors, Thyrotropin , SARS-CoV-2 , Thyroid Gland , Viral Vaccines/adverse effects
6.
Cell Discov ; 8(1): 10, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1661960

ABSTRACT

SARS-CoV-2 inactivated vaccines have shown remarkable efficacy in clinical trials, especially in reducing severe illness and casualty. However, the waning of humoral immunity over time has raised concern over the durability of immune memory following vaccination. Thus, we conducted a nonrandomized trial among the healthcare workers (HCWs) to investigate the long-term sustainability of SARS-CoV-2-specific B cells and T cells stimulated by inactivated vaccines and the potential need for a third booster dose. Although neutralizing antibodies elicited by the standard two-dose vaccination schedule dropped from a peak of 29.3 arbitrary units (AU)/mL to 8.8 AU/mL 5 months after the second vaccination, spike-specific memory B and T cells were still detectable, forming the basis for a quick recall response. As expected, the faded humoral immune response was vigorously elevated to 63.6 AU/mL by 7.2 folds 1 week after the third dose along with abundant spike-specific circulating follicular helper T cells in parallel. Meanwhile, spike-specific CD4+ and CD8+ T cells were also robustly elevated by 5.9 and 2.7 folds respectively. Robust expansion of memory pools by the third dose potentiated greater durability of protective immune responses. Another key finding in this trial was that HCWs with low serological response to two doses were not truly "non-responders" but fully equipped with immune memory that could be quickly recalled by a third dose even 5 months after the second vaccination. Collectively, these data provide insights into the generation of long-term immunological memory by the inactivated vaccine, which could be rapidly recalled and further boosted by a third dose.

7.
BMJ ; 369: m2195, 2020 06 10.
Article in English | MEDLINE | ID: covidwho-1430181

ABSTRACT

OBJECTIVE: To examine the protective effects of appropriate personal protective equipment for frontline healthcare professionals who provided care for patients with coronavirus disease 2019 (covid-19). DESIGN: Cross sectional study. SETTING: Four hospitals in Wuhan, China. PARTICIPANTS: 420 healthcare professionals (116 doctors and 304 nurses) who were deployed to Wuhan by two affiliated hospitals of Sun Yat-sen University and Nanfang Hospital of Southern Medical University for 6-8 weeks from 24 January to 7 April 2020. These study participants were provided with appropriate personal protective equipment to deliver healthcare to patients admitted to hospital with covid-19 and were involved in aerosol generating procedures. 77 healthcare professionals with no exposure history to covid-19 and 80 patients who had recovered from covid-19 were recruited to verify the accuracy of antibody testing. MAIN OUTCOME MEASURES: Covid-19 related symptoms (fever, cough, and dyspnoea) and evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, defined as a positive test for virus specific nucleic acids in nasopharyngeal swabs, or a positive test for IgM or IgG antibodies in the serum samples. RESULTS: The average age of study participants was 35.8 years and 68.1% (286/420) were women. These study participants worked 4-6 hour shifts for an average of 5.4 days a week; they worked an average of 16.2 hours each week in intensive care units. All 420 study participants had direct contact with patients with covid-19 and performed at least one aerosol generating procedure. During the deployment period in Wuhan, none of the study participants reported covid-19 related symptoms. When the participants returned home, they all tested negative for SARS-CoV-2 specific nucleic acids and IgM or IgG antibodies (95% confidence interval 0.0 to 0.7%). CONCLUSION: Before a safe and effective vaccine becomes available, healthcare professionals remain susceptible to covid-19. Despite being at high risk of exposure, study participants were appropriately protected and did not contract infection or develop protective immunity against SARS-CoV-2. Healthcare systems must give priority to the procurement and distribution of personal protective equipment, and provide adequate training to healthcare professionals in its use.


Subject(s)
Coronavirus Infections/prevention & control , Health Personnel , Infection Control/instrumentation , Pandemics/prevention & control , Personal Protective Equipment/supply & distribution , Pneumonia, Viral/prevention & control , Adult , Betacoronavirus , COVID-19 , China , Coronavirus Infections/diagnosis , Cross-Sectional Studies , Female , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Intensive Care Units , Male , Middle Aged , Occupational Exposure/prevention & control , Pneumonia, Viral/diagnosis , SARS-CoV-2
9.
J Clin Endocrinol Metab ; 105(12)2020 12 01.
Article in English | MEDLINE | ID: covidwho-742481

ABSTRACT

BACKGROUND: Systemic corticosteroids are now recommended in many treatment guidelines, although supporting evidence is limited to 1 randomized controlled clinical trial (RECOVERY). OBJECTIVE: To identify whether corticosteroids were beneficial to COVID-19 patients. METHODS: A total of 1514 severe and 249 critical hospitalized COVID-19 patients from 2 medical centers in Wuhan, China. Multivariable Cox models, Cox model with time-varying exposure and propensity score analysis (inverse-probability-of-treatment-weighting [IPTW] and propensity score matching [PSM]) were used to estimate the association of corticosteroid use with risk of in-hospital mortality in severe and critical cases. RESULTS: Corticosteroids were administered in 531 (35.1%) severe and 159 (63.9%) critical patients. Compared to the non-corticosteroid group, systemic corticosteroid use was not associated with beneficial effect in reducing in-hospital mortality in either severe cases (HR = 1.77; 95% CI, 1.08-2.89; P = 0.023), or critical cases (HR = 2.07; 95% CI, 1.08-3.98; P = 0.028). Findings were similar in time-varying Cox analysis. For patients with severe COVID-19 at admission, corticosteroid use was not associated with improved or harmful outcome in either PSM or IPTW analysis. For critical COVID-19 patients at admission, results were consistent with multivariable Cox model analysis. CONCLUSION: Corticosteroid use was not associated with beneficial effect in reducing in-hospital mortality for severe or critical cases in Wuhan. Absence of the beneficial effect in our study in contrast to that observed in the RECOVERY clinical trial may be due to biases in observational data, in particular prescription by indication bias, differences in clinical characteristics of patients, choice of corticosteroid used, timing of initiation of treatment, and duration of treatment.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Hospital Mortality/trends , Hospitalization/statistics & numerical data , Pneumonia, Viral/drug therapy , Pneumonia, Viral/mortality , Adrenal Cortex Hormones/therapeutic use , Aged , COVID-19 , Coronavirus Infections/virology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Prognosis , Retrospective Studies , SARS-CoV-2 , Survival Rate
10.
BMJ Open Diabetes Res Care ; 8(1)2020 06.
Article in English | MEDLINE | ID: covidwho-542410

ABSTRACT

INTRODUCTION: With intense deficiency of medical resources during COVID-19 pandemic, risk stratification is of strategic importance. Blood glucose level is an important risk factor for the prognosis of infection and critically ill patients. We aimed to investigate the prognostic value of blood glucose level in patients with COVID-19. RESEARCH DESIGN AND METHODS: We collected clinical and survival information of 2041 consecutive hospitalized patients with COVID-19 from two medical centers in Wuhan. Patients without available blood glucose level were excluded. We performed multivariable Cox regression to calculate HRs of blood glucose-associated indexes for the risk of progression to critical cases/mortality among non-critical cases, as well as in-hospital mortality in critical cases. Sensitivity analysis were conducted in patient without diabetes. RESULTS: Elevation of admission blood glucose level was an independent risk factor for progression to critical cases/death among non-critical cases (HR=1.30, 95% CI 1.03 to 1.63, p=0.026). Elevation of initial blood glucose level of critical diagnosis was an independent risk factor for in-hospital mortality in critical cases (HR=1.84, 95% CI 1.14 to 2.98, p=0.013). Higher median glucose level during hospital stay or after critical diagnosis (≥6.1 mmol/L) was independently associated with increased risks of progression to critical cases/death among non-critical cases, as well as in-hospital mortality in critical cases. Above results were consistent in the sensitivity analysis in patients without diabetes. CONCLUSIONS: Elevation of blood glucose level predicted worse outcomes in hospitalized patients with COVID-19. Our findings may provide a simple and practical way to risk stratify COVID-19 inpatients for hierarchical management, particularly where medical resources are in severe shortage during the pandemic.


Subject(s)
Betacoronavirus , Blood Glucose/analysis , Coronavirus Infections/blood , Coronavirus Infections/mortality , Hospitalization , Hyperglycemia/diagnosis , Pneumonia, Viral/blood , Pneumonia, Viral/mortality , Aged , COVID-19 , Coronavirus Infections/virology , Critical Illness , Disease Progression , Female , Follow-Up Studies , Hospital Mortality , Humans , Inpatients , Length of Stay , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Prognosis , Retrospective Studies , Risk Factors , SARS-CoV-2 , Treatment Outcome
11.
Med Teach ; 42(7): 787-790, 2020 07.
Article in English | MEDLINE | ID: covidwho-431956

ABSTRACT

The COVID-19 outbreak can be seen as a 'big test' for China; a summative assessment of its preparedness on multiple fronts, including medical education. Being intimately involved in the coordinated response, the First Affiliated Hospital of Sun Yat-sen University has been a first-hand witness to the strengths and weaknesses of the current medical education system in China. On the one hand, we believe that the distinguished contributions in disease containment efforts by healthcare professionals indicated that our medical education system has achieved its intended outcomes and is socially accountable. On the other hand, we have also identified three major issues that need to be addressed from an educational standpoint: insufficient emphasis on public health emergency preparedness; unsophisticated mechanisms for interdisciplinary cooperation; and inadequate guidance in medical ethics. Whilst these reflections might be seen in its summative form, we would suggest changing it to that of a formative process, where we learn from our assessment through observation and feedback of the gaps, upon which improvement of our present situation can be made. We hope that these lessons may be helpful to our colleagues in the rest of China and around the world, who are engaged in medical educational reform.


Subject(s)
Coronavirus Infections/epidemiology , Education, Medical/organization & administration , Pneumonia, Viral/epidemiology , Betacoronavirus , COVID-19 , China/epidemiology , Communicable Disease Control/organization & administration , Disaster Planning/organization & administration , Education, Medical/standards , Ethics, Medical , Humans , Interprofessional Relations , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL